pose2sim/Pose2Sim/Utilities/trc_combine.py
2023-10-18 12:56:15 +02:00

169 lines
5.8 KiB
Python

#! /usr/bin/env python
# -*- coding: utf-8 -*-
'''
##################################################
## Combine two trc files ##
##################################################
Combine two trc files.
Example: you have run Pose2Sim with OpenPose AND with a DeepLabCut model
(or any other marker-based or markerless pose estimation algorithm),
and you want to assemble both detections before running OpenSim.
Usage:
from Pose2Sim.Utilities import trc_combine; trc_combine.trc_combine_func(r'<first_path>', r'<second_path>', r'<output_path>')
OR python -m trc_combine -i first_path -j second_path -o output_path
OR python -m trc_combine -i first_path -j second_path
'''
## INIT
import os
import pandas as pd
import numpy as np
import argparse
## AUTHORSHIP INFORMATION
__author__ = "David Pagnon"
__copyright__ = "Copyright 2022, Pose2Sim"
__credits__ = ["David Pagnon"]
__license__ = "BSD 3-Clause License"
__version__ = '0.4'
__maintainer__ = "David Pagnon"
__email__ = "contact@david-pagnon.com"
__status__ = "Development"
## FUNCTIONS
def df_from_trc(trc_path):
'''
Retrieve header and data from trc path.
INPUT:
trc_path: path to trc file
OUTPUT:
header: dictionary of header data
data: pandas dataframe of data
'''
# DataRate CameraRate NumFrames NumMarkers Units OrigDataRate OrigDataStartFrame OrigNumFrames
df_header = pd.read_csv(trc_path, sep="\t", skiprows=1, header=None, nrows=2, encoding="ISO-8859-1")
header = dict(zip(df_header.iloc[0].tolist(), df_header.iloc[1].tolist()))
# Label1_X Label1_Y Label1_Z Label2_X Label2_Y
df_lab = pd.read_csv(trc_path, sep="\t", skiprows=3, nrows=1)
labels = df_lab.columns.tolist()[2:-1:3]
labels_XYZ = np.array([[labels[i]+'_X', labels[i]+'_Y', labels[i]+'_Z'] for i in range(len(labels))], dtype='object').flatten()
labels_FTXYZ = np.concatenate((['Frame#','Time'], labels_XYZ))
data = pd.read_csv(trc_path, sep="\t", skiprows=5, index_col=False, header=None, names=labels_FTXYZ)
return header, data
def combine_trc_headerdata (first_path, second_path):
'''
Combine headers and data from two different trc files.
INPUT:
first_path: path to first trc file
second_path: path to second trc file
OUTPUT:
Header: dictionary of combined headers
Data: dataframe of combined trc data
'''
first = df_from_trc(first_path)
second = df_from_trc(second_path)
frames_first = int(first[0].get('NumFrames'))
frames_second = int(second[0].get('NumFrames'))
NumFrames = min(frames_first, frames_second)
OrigNumFrames = NumFrames
NumMarkers = int(first[0].get('NumMarkers')) + int(second[0].get('NumMarkers'))
Header = first[0]
Header.update({'NumFrames': str(NumFrames), 'OrigNumFrames':str(OrigNumFrames), 'NumMarkers':str(NumMarkers)})
Data = pd.concat([first[1].iloc[:NumFrames,:], second[1].iloc[:NumFrames, 2:]], axis=1)
return Header, Data
def trc_from_header_data(Header, Data, combined_path):
'''
Opposite of df_from_trc: builds trc from header and data.
INPUT:
Header: Header dictionary
Data: Dataframe of trc data
combined_path: output path of combined trc files
OUTPUT:
writes combined trc file
'''
header0_str = 'PathFileType\t4\t(X/Y/Z)\t' + combined_path
header1_str1 = '\t'.join(Header.keys())
header1_str2 = '\t'.join(Header.values())
labels_markers = [s.split('_')[0] for s in Data.columns][2::3]
header2_str1 = 'Frame#\tTime\t' + '\t\t\t'.join([item.strip() for item in labels_markers]) + '\t\t'
header2_str2 = '\t\t'+'\t'.join(['X{i}\tY{i}\tZ{i}'.format(i=i+1) for i in range(int(Header['NumMarkers']))])
header_trc = '\n'.join([header0_str, header1_str1, header1_str2, header2_str1, header2_str2])
with open(combined_path, 'w') as trc_o:
trc_o.write(header_trc+'\n')
Data.to_csv(trc_o, sep='\t', index=False, header=None, lineterminator='\n')
def trc_combine_func(*args):
'''
Combine two trc files.
Example: you have run Pose2Sim with OpenPose AND with a DeepLabCut model
(or any other marker-based or markerless pose estimation algorithm),
and you want to assemble both detections before running OpenSim.
Usage:
from Pose2Sim.Utilities import trc_combine; trc_combine.trc_combine_func(r'<first_path>', r'<second_path>', r'<output_path>')
OR python -m trc_combine -i first_path -j second_path -o output_path
OR python -m trc_combine -i first_path -j second_path
'''
try:
first_path = os.path.realpath(args[0].get('first_path')) # invoked with argparse
second_path = os.path.realpath(args[0].get('second_path'))
output_path = args[0].get('output_path')
if output_path == None:
output_path = os.path.join(os.path.dirname(first_path), 'combined.trc')
else:
output_path = os.path.realpath(output_path)
except:
first_path = os.path.realpath(args[0]) # invoked as a function
second_path = os.path.realpath(args[1])
try:
output_path = os.path.realpath(args[2])
except:
output_path = os.path.join(os.path.dirname(first_path), 'combined.trc')
Header, Data = combine_trc_headerdata (first_path, second_path)
trc_from_header_data(Header, Data, output_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--first_path', required = True, help='first trc file path')
parser.add_argument('-j', '--second_path', required = True, help='second trc file path')
parser.add_argument('-o', '--output_path', required = False, help='path of combined trc files')
args = vars(parser.parse_args())
trc_combine_func(args)